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Therefore, lim f(x) does not exist.
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5. (a) Because lim f(z) =€’ —a=1—a, lim f(x)=1 and lim f(z) exists,
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(b) Note that f(0) =1= limo f(z), this really mean f(z) is continuous at z = 0.
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by sandwich theorem,
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thus f(z) is continuous at « = 1.

7. (a) Put z = y = 0 into the equation of the second condition, then we have f(0) = [f(0)]? and
so f(0) =1 or f(0) = 0 (rejected as f(0) > 0). Put y = 0 into the equation of the second

condition, then for all real numbers x, we have

flz]) = f(Va2) = f(2)£(0) = f().



(b) We are going to prove by using mathematical induction on n.
When n = 1, we have f(v/1z) = f(z) = [f(z)]*.

Assume that f(y/nz) = [f(x)]™ for some natural numbers n. Then we have
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Therefore, by mathematical induction, f(y/nz) = [f(x)]™ for all natural numbers n.

(Remark: Be careful, when = < 0, x # vx? and that is the reason why we need the first

equality.)

(¢) We divide our discussion into three cases:

i.

ii.

iii.

(r is a positive rational number) We let r = b where p and ¢ are some natural numbers.
q

Use (b) by putting x = é and n = ¢%, we have f(1) = [f(é)]q2 and so [f(l)]l/"?2 = f(é)
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Note that f(g) = f(y/p?- ). Use (b) by putting n = p? and x = =, we have
q q q

)= [F(5)]F = [fVC]P = [F(1)) @97,

Therefore, we have f(r) = [f(1)]" for all positive rational numbers r.

You may have question that how we make a suitbale guess of  and n in the above.
Here is the idea:

We want to show that f(g) = [f(l)](”/q>2. In order to see f(=), we have to use part (b)
1 1.2

1 25 f[f(5)]” :

Therefore, what remains to show is that f(g) = [f(l)]l/q . We would like to prove it
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and put z = = and n = p?. Then, we have f(g) = f(vp* -)
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by using (b) again, but it would be difficult since the power n in the equation of (b) is

1
a positive integer. To show the above, it is equivalent to show that [f(1)] = [f(=)]? .
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In order to see f(1), we have to use part (b) and put = — and n = ¢* and the result
q

follows.

(r is a negative rational number) We have
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(r =0) Recall in (a) that we have f(0) = 1.
Therefore, f(r) = [f(1)]"”" =1 for the case r = 0.



Therefore, f(r) = [f(l)]’”z for all rational numbers r.

(d) Let a, be a sequence of rational numbers such that lim a, = z. Then we have
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